The Energy-Momentum Method for the Stability of Nonholonomic Systems
نویسندگان
چکیده
In this paper we analyze the stability of relative equilibria of nonholonomic systems (that is, mechanical systems with nonintegrable constraints such as rolling constraints). In the absence of external dissipation, such systems conserve energy, but nonetheless can exhibit both neutrally stable and asymptotically stable, as well as linearly unstable relative equilibria. To carry out the stability analysis, we use a generalization of the energy-momentum method combined with the Lyapunov-Malkin theorem and the center manifold theorem. While this approach is consistent with the energy-momentum method for holonomic systems, it extends it in substantial ways. The theory is illustrated with several examples, including the the rolling disk, the roller racer, and the rattleback top.
منابع مشابه
Momentum and Energy Preserving Integrators for Nonholonomic Dynamics
In this paper, we propose a geometric integrator for nonholonomic mechanical systems. It can be applied to discrete Lagrangian systems specified through a discrete Lagrangian Ld : Q × Q → R, where Q is the configuration manifold, and a (generally nonintegrable) distribution D ⊂ TQ. In the proposed method, a discretization of the constraints is not required. We show that the method preserves the...
متن کاملPOTENTIAL ENERGY BASED STABILITY ANALYSIS OF FUZZY LINGUISTIC SYSTEMS
This paper presents the basic concepts of stability in fuzzy linguistic models. Theauthors have proposed a criterion for BIBO stability analysis of fuzzy linguistic modelsassociated to linear time invariant systems [25]-[28]. This paper presents the basic concepts ofstability in the general nonlinear and linear systems. This stability analysis method is verifiedusing a benchmark system analysis.
متن کاملPoisson Reduction for Nonholonomic Mechanical Systems with Symmetry
This paper continues the work of Koon and Marsden [1997b] that began the comparison of the Hamiltonian and Lagrangian formulations of nonholonomic systems. Because of the necessary replacement of conservation laws with the momentum equation, it is natural to let the value of momentum be a variable and for this reason it is natural to take a Poisson viewpoint. Some of this theory has been starte...
متن کاملA semi-analytical model for velocity profile at wind turbine wake using blade element momentum
The shape of wake behind a wind turbine is normally assumed to have a hat shape for the models used in wind farm layout optimization purposes; however, it is know from experimental tests and numerical simulations that this is not a real assumption. In reality, the results of actual measurements and detailed numerical simulation show that the velocity in wake region has a S-shape profile. Th...
متن کاملThe Euler – Lagrange Equations for Nonholonomic Systems
This paper applies the recently developed theory of discrete nonholonomic mechanics to the study of discrete nonholonomic left-invariant dynamics on Lie groups. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conse...
متن کامل